當前位置:文範網 >

工作總結 >工作總結精選 >

高一數學函數知識點總結歸納【精品多篇】

高一數學函數知識點總結歸納【精品多篇】

高一數學函數知識點總結歸納【精品多篇】

高一數學:如何適應,如何學好? 篇一

進入高一以後,數學的深度開始增大,但是,我們都知道,數學是一個多麼重要的學科,因此,這個嶄新的階段開始,一定要重視數學的學習。那麼,在高一時期,如何儘快適應新內容,掌握新知識呢?

對此,高一的新同學,可以多向學長學姐請教,也可以多諮詢老師,當然了,一切都只是引路人,最終還是要靠自己提高悟性,努力學習。

一名高中生,要有最科學的學習方法,才能事半功倍。比如,在數學學習當中,高一同學要能夠學會檢查和分析,要掌握自己學習的進度,還要願意動腦思考,願意積極投入到數學學習中去。如果能夠做到以下3點,高一的同學一定能夠規避錯誤,提高數學成績。

第1點:正確瞭解高中數學的特點。

高中數學與國中數學是完全不同的兩個概念,最大的區別就是,高中數學更加抽象了。讀過高中的同學都清楚,像集合、映射等概念,十分難以理解,而且離生活很遠, 不像國小和國中的數學那樣“接地氣”。還有,國中和高中的數學語言,也是有明顯區別的。國中的數學,它是形象、通俗的。而高一數學,卻變化了,它一下子就觸及到了抽象的集合語言、邏輯運算語言、函數語言、空間立體幾何等。對於剛剛升入高中的同學來説,顯然很難以接受這種改變。那麼,進入高中以後,同學們一定要注意到這種變化,要能接受並適應這種變化,如此,才能學好數學哦。

第2點:改變不好的學習習慣。

很多高一的學生,沒有良好的學習習慣,比如,依靠心理很嚴重,不少同學,根本不願意發散思維,他只憑借課堂上老師講的內容,來完成練習題,殊不知,只會照貓畫虎的話,根本不能深入到學習當中去。還有,一些同學進入高中了,卻還把自己當成國小生,根本不願意提前預習,或者參與到老師的提問當中,只願意呆坐着等老師灌輸,這樣被動的學習,根本學不到真東西。

還有,一部分同學在進入高中後,思想上並沒有做好準備,而是十分懶怠,覺得高一不用着急,高三時再用心苦讀就可以了,其實呀,這種思想是完全錯誤的!高中階段的數學這樣難,只能一步一個腳印踏踏實實學,你丟棄了高一、高二的黃金時期,高三再苦讀,也是趕不上去的!

第3點,要學會科學地分配學習時間,會用巧勁。

學習要得法才行,大部分學霸,是非常注重課堂聽講的,畢竟,老師們在上課之前,一定會提前備課,也會反覆講解本節課當中的重難點知識,此時,一定要積極跟着老師的思維走,不能想別的東西分散注意力,課堂上,老師所講的概念呀法則呀公式呀定理呀,都是十分重要的,一定要吃透了,聽進到頭腦當中,切莫上課不聽下課問,或者作業照抄了事,這都是對自己不負責任的表現!

還有,學習當中,一定要注重基礎,數學是最重視基礎知識的,由易到難,循序漸進,而且呢,學習當中,也不能只顧刷題,卻不管算理。學習數學,要注意提升自己的深度和廣度,一定要正確掌握數學分析方法,像是在學習函數值的求法,實根分佈與參數變量的討論,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等之時,高一學生一定要做好數學內容的銜接,還要及時地查漏補缺才行,切莫讓知識點出現斷痕!

綜合以上幾點,高一生在學習數學時,一定要方法得當,才能真正把數學這個攔路虎給解決了。試想一下,如果同學你能在大學聯考當中數學考140分以上,是不是很給力呢?

高一函數知識點總結 篇二

函數先看他的樹枝圖,第一個點要了解函數定義講完,講解函數三要素(定義域、解析式、值域)

接下來講解函數四性質(單調性、奇偶性、週期性、對稱性)

接下來講解函數類型主要講解二次函數、指數、對數、冪函數、反函數這些內容講完後,這個就是函數基礎內容。

函數基礎內容講完後,準備了函數專題一:講解函數零點問題分為了四個題型格外重要,一出題就是大學聯考壓軸題

那麼第二個專題講到恆成立問題

第三個專題總結一下函數壓軸小題不能常規做,如果常規做,極有可能時間浪費掉正確答案也做不出來,有技巧的,有三個技巧方法非常高效。

第一種題型:三次函數的單調性、極值、最值及其應用,其實這個點,我們在六類不等式提到過。

第二種題型:差異取值驗證法在解決函數選擇難題中的妙用,全國卷做完百分之八十壓軸選擇題,除了一點函數題之外,其他章節題目也能用這個思想去做,同學可能或多或少有了解,帶着大家把這種方法徹底讓你掌握,高效去做壓軸選擇題

第三種題型:已知函數不等式求解抽象不等式這種題型是構造函數這些內容全部講完相信你對函數這章體系特別完整,那麼後續學習其他章節就不會因為函數這章沒有學好而影響後面的學習。

那麼開始進入第一個點函數三要素,一個點定義域,給大家講解三個點

已知解析式型

已知解析式型(四個類型)

根據四個類型講解例題:

抽象函數型

例題1、已知f(x)的定義域為[3,5],求f(2x-1)的定義域。(解題過程答案如圖)

例題2、已知f(2x-1)的定義域為[3,5],求f(x)的定義域

例題3、已知f(2x-1)的定義域為[3,5]求f(4x-1)的定義域

已知定義域求參數範圍:

高一函數知識點總結 篇三

(一)、映射、函數、反函數

1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

2、對於函數的概念,應注意如下幾點:

(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關係式,特別是會求分段函數的解析式。

(3)如果y=f(u),u=g(x),那麼y=f[g(x)]叫做f和g的複合函數,其中g(x)為內函數,f(u)為外函數。

3、求函數y=f(x)的反函數的一般步驟:

(1)確定原函數的值域,也就是反函數的定義域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)將x,y對換,得反函數的習慣表達式y=f—1(x),並註明定義域。

注意:

①對於分段函數的反函數,先分別求出在各段上的反函數,然後再合併到一起。

②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。

(二)、函數的解析式與定義域

1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域。求函數的定義域一般有三種類型:

(1)有時一個函數來自於一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可。如:

①分式的分母不得為零;

②偶次方根的被開方數不小於零;

③對數函數的真數必須大於零;

④指數函數和對數函數的底數必須大於零且不等於1;

⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),餘切函數y=cotx(x∈R,x≠kπ,k∈Z)等。

應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。

(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可。

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

2、求函數的解析式一般有四種情況

(1)根據某實際問題需建立一種函數關係時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式。

(2)有時題設給出函數特徵,求函數的解析式,可採用待定係數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可。

(3)若題設給出複合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當於求函數的定義域。

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

(三)、函數的值域與最值

1、函數的值域取決於定義域和對應法則,不論採用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。

(2)換元法:運用代數式或三角換元將所給的複雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式裏一次式時用代數換元,當根式裏是二次式時,用三角換元。

(3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關係,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可採用此法求得。

(4)配方法:對於二次函數或二次函數有關的函數的值域問題可考慮用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域。其題型特徵是解析式中含有根式或分式。

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函數的值域。

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,藉助於幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

2、求函數的最值與值域的區別和聯繫

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

如函數的值域是(0,16],最大值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域後,如x>0時,函數的最小值為2。可見定義域對函數的值域或最值的影響。

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

(四)、函數的奇偶性

1、函數的奇偶性的定義:對於函數f(x),如果對於函數定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那麼函數f(x)就叫做奇函數(或偶函數)。

正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恆等式。(奇偶性是函數定義域上的整體性質)。

2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便於判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那麼在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函數的複合函數的奇偶性通常是偶函數;

(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

3、有關奇偶性的幾個性質及結論

(1)一個函數為奇函數的充要條件是它的圖象關於原點對稱;一個函數為偶函數的充要條件是它的圖象關於y軸對稱。

(2)如要函數的定義域關於原點對稱且函數值恆為零,那麼它既是奇函數又是偶函數。

(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。

(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。

(6)奇偶性的推廣

函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。

(五)、函數的`單調性

1、單調函數

對於函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數。

對於函數單調性的定義的理解,要注意以下三點:

(1)單調性是與“區間”緊密相關的概念。一個函數在不同的區間上可以有不同的單調性。

(2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。

(3)單調區間是定義域的子集,討論單調性必須在定義域範圍內。

(4)注意定義的兩種等價形式:

設x1、x2∈[a,b],那麼:

①在[a、b]上是增函數;

在[a、b]上是減函數。

②在[a、b]上是增函數。

在[a、b]上是減函數。

需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零。

(5)由於定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這説明單調性使得自變量間的不等關係和函數值之間的不等關係可以“正逆互推”。

5、複合函數y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。

在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握並熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程。

6、證明函數的單調性的方法

(1)依定義進行證明。其步驟為:

①任取x1、x2∈M且x1(或<)f(x2);

②根據定義,得出結論。

(2)設函數y=f(x)在某區間內可導。

如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數。

(六)、函數的圖象

函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。

求作圖象的函數表達式

與f(x)的關係

由f(x)的圖象需經過的變換

y=f(x)±b(b>0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=—f(x)

作關於x軸的對稱圖形

y=f(|x|)

右不動、左右關於y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f—1(x)

作關於直線y=x的對稱圖形

y=f(ax)(a>0)

橫座標縮短到原來的,縱座標不變

y=af(x)

縱座標伸長到原來的|a|倍,橫座標不變

y=f(—x)

作關於y軸對稱的圖形

【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

①求證:f(0)=1;

②求證:y=f(x)是偶函數;

③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個週期;如果不是,請説明理由。

思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般採用賦值法。

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這説明f(x)為偶函數。

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=—f(x)。

兩邊應用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),

所以f(x)是周期函數,2c就是它的一個週期。

高一函數知識點總結 篇四

一、函數的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:

(1)對映射定義的理解。

(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

2、函數

構成函數概念的三要素

①定義域

②對應法則

③值域

兩個函數是同一個函數的條件:三要素有兩個相同

二、函數的解析式與定義域

1、求函數定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函數的真數必須大於零;

(4)指數函數和對數函數的底數必須大於零且不等於1;

三、函數的值域

1求函數值域的方法

①直接法:從自變量x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函數;

②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函數的單調性求值域;

⑥圖象法:二次函數必畫草圖求其值域;

⑦利用對號函數

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數

四。函數的奇偶性

1、定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函數。

如果對於任意∈A,都有,則稱y=f(x)為奇

函數。

2、性質:

①y=f(x)是偶函數y=f(x)的圖象關於軸對稱,y=f(x)是奇函數y=f(x)的圖象關於原點對稱,

②若函數f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關於原點對稱]

3、奇偶性的判斷

①看定義域是否關於原點對稱

②看f(x)與f(-x)的關係

五、函數的單調性

1、函數單調性的定義:

2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

  • 文章版權屬於文章作者所有,轉載請註明 https://wenfanwang.com/gongzuozongjie/gongzuojingxuan/g41dl3.html
專題